
Exercises with

’An 88(/99) line topology optimization code written in Matlab’ ∗

Ole Sigmund, Fengwen Wang, Niels Aage, Jakob S. Jensen and Casper S. Andreasen
Department of Mechanical Engineering, Solid Mechanics, Building 404

Technical University of Denmark
DK-2800 Lyngby, Denmark

May 25, 2021

1 Introduction

The following exercises are based on the paper Efficient topology optimization in MATLAB using
88 lines of code (Andreassen et al. 2011). Both the source code and a preprint of the paper
can be downloaded from www.topopt.dtu.dk. The exercises require some basic knowledge of
mechanics, finite element analysis and optimization theory. For groups with less Matlab and
Finite Element experience, the less efficient1 but more transparent 99 line code (Sigmund 2001)
may also be used as a basis for the exercises.

You should solve at least problems 1-6 during the course. If you have previous experience or
you are fast you may skip problems 1-3 and solve some of the more complex problems 7 through
14 in section 4. For the interested students there is also the possibility to work with large scale
topology optimization using the C++ TopOpt in PETSc framework, see www.topopt.dtu.dk/

PETSc. This will however require that you have significant prior experience with programming
languages such as C/C++ or Fortran.

The solutions must be presented in a presentation session (consisting of a number of slides)
and a copy of the slide show and important source code(s) must be handed over to Ole Sigmund
on Tuesday June 1st. The evaluation procedure will be explained, however, document your
findings by saving different versions of your programs and insert key figures in a slide show
already from the beginning.

The papers (Andreassen et al. 2011, Sigmund 2001) (see also the appendix in Bendsøe and
Sigmund (2004)) give a lot of hints on how to solve problems 1 through 6.

From the file sharing pages on Learn (learn.inside.dtu.dk) you can download relevant
Matlab subroutines and other relevant material during the course.

2 Getting started

• Form a group of preferably 2 students and login to the DTU system with your student
account. Try to make sure that at least one group member has a mechanical engineering
background and one has Matlab programming experience. Also try to hook up with
somebody you do not already know - networking is important!

∗Intended for the DCAMM-course: Topology Optimization - Theory, Methods and Applications held at DTU,
Lyngby, Denmark, May 26th – June 1st, 2021.

1A speed quick-fix will be provided

1

• Go to the TOPOPT web-page: www.topopt.dtu.dk

• Choose “Apps/software” and “Matlab codes”

• Download the Matlab code top88.m (or top.m) to your home directory ”My Documents”

• Start up Matlab

• Run the default MBB-example by writing top88(300,100,0.5,3.0,1.1,1) in the Matlab
command line

• Start experimenting with the code

• Keep an original version of the Matlab code and start editing new versions

• Extensions to the Matlab code such as a few lines which create a displacement picture, the
equations for the strain-displacement matrix and a more efficient sparse assembly strategy
(for the 99-line code) are given in appendices A, B and C. You can also download these
from Learn along with a tool that plots nodes, forces and boundary conditions.

3 Recommended problems

The downloaded Matlab code solves the problem of optimizing the material distribution in the
MBB-beam such that its compliance is minimized. A number of extensions and changes in the
algorithm can be thought of.

Problem 1: Test influence of discretization, filter type, filter size and penal-
ization power

Use the Matlab code to investigate the influence of the filter type (sensitivity or density), filter
size rmin, the penalization power penal and the discretization (nelx*nely) on the topology of
the MBB-beam (default example). Discuss the results.

Problem 2: Implement other boundary conditions

Change boundary and support conditions in order to solve the optimization problems sketched
in Figure 1. Does the direction of the forces change the design?

������

?
������ ������

?
������

Figure 1: Topology optimization of a ”bridge” structure. Left: two (simultaneous) point loads and right: dis-
tributed load.

Problem 3: Implement multiple load cases

Extend the algorithm such that it can solve the two-load case problem shown in Figure 2. Discuss
the difference in topology compared to the one-load case solution from Figure 1(left).

2

Load 2Load 1

������

?
������

Figure 2: Topology optimization of a bridge structure with two load cases.

Problem 4: Method of Moving Asymptotes (MMA)

Krister Svanberg from KTH in Stockholm Sweden has written an optimization routine called
Method of Moving Asymptotes (MMA) (Svanberg 1987). Rewrite the topology optimization
code such that it calls the MMA Matlab routine instead of the Optimality Criteria Solver. Use
the developed software to optimize the default MBB-beam and possibly other examples. How
does it compare to the OC solver?

The MMA routines mmasub.m and subsolv.m can be downloaded from the file sharing pages
on Learn together with the documentation for the Matlab MMA code. The program solves the
following optimization problem

min
xxx,yyy,z

: f0(xxx) + a0 z +
m∑
i=1

(ciyi +
1

2
diy

2
i)

subject to : fi(xxx)− ai z − yi ≤ 0, i = 1, . . . ,m

: xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n

: yi ≥ 0, i = 1, . . . ,m

: z ≥ 0

, (1)

where m and n are number of constraints and number of design variables respectively, x is the
vector of design variables, y and z are positive optimization variables, f0 is the objective function,
f1, . . . , fm are the constraint functions (fi(xxx) ≤ 0) and ai, ci and di are positive constants which
can be used to determine the type of optimization problem.

If we want to solve the simpler problem

min
xxx

: f0(xxx)

subject to : fi(xxx) ≤ 0, i = 1, . . . ,m

: xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n

 , (2)

we must make sure that the optimization variables y and z from the original optimization
problem (1) are equal to zero at optimum. This is obtained if we select the constants to the
following values (suggested by Krister Svanberg)

a0 = 1, ai = 0, ci = 1000, d = 0. (3)

The call of the MMA routine requires the determination of sensitivities df0dx, df0dx2,

dfdx, dfdx2 corresponding to the derivatives ∂f0
∂xj

, ∂2f0
∂x2

j
, ∂fi
∂xj

and ∂2fi
∂x2

j
, respectively. Since second

3

derivatives are difficult to determine in topology optimization problems, we simply set them to
zero.

The MMA call is

function [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ...

mmasub(m,n,iter,xval,xmin,xmax,xold1,xold2, ...

f0val,df0dx,df0dx2,fval,dfdx,dfdx2,low,upp,a0,a,c,d);

Hints:

• Check the MMA documentation or the mmasub.m file for explanations and definitions of
the MMA variables

• Watch out for the difference between column and row vectors

• Remember to normalize constraints and objective function, i.e. instead of V (x)− V ∗ ≤ 0
use V (x)/V ∗ − 1 ≤ 0

• In order to convert a Matlab matrix to a Matlab vector you may make use of the Matlab
command reshape (type help reshape in the Matlab prompt to get help on reshape)

Problem 5: Mechanism synthesis

Extend the Matlab code to include compliant mechanism synthesis. Solve the inverter problem
in Figure 3.

Output
force

Input
force

��

��
Figure 3: Synthesis of compliant inverter mechanism.

The simplest compliant mechanism design formulation is one with springs at both input and
output ports. The input spring stiffness together with the input force constitute a model of
so-called strain-based actuators, such as piezo-electric or shape memory alloy (SMA) actuators.
The input force is given by the actuator blocking force and the spring stiffness is given by the
actuator stiffness or the ratio between the blocking force and the unloaded actuator displacement.
The resulting optimization problem is formulated as

min
xxx

: uout

subject to : V (x) = vT x ≤ V ∗

: Ku = fin

: 0 < xmin
j ≤ xj ≤ 1, j = 1, . . . , n

, (4)

4

A slightly more complicated and less physical formulation is the one from Sigmund (1997),
where the input spring/force model is substituted with an input displacement constraint uin ≤
u∗in. One can here use the same input force as for the double spring model above but the input
spring is removed from the model. As initial value for the input displacement constraint one can
use the input displacement obtained after the optimization of the double spring problem. The
inclusion of an additional constraint is a good starting exercise when learning to solve topology
optimization problems with multiple constraints.

Hints:

• The input displacement is found as uin = uT lin where lin is a unit vector which has the
value one at the input degree of freedom and is zero for all other degrees of freedom.

• The output displacement is found as uout = uT lout where lout is a unit vector which has
the value one at the output degree of freedom and is zero for all other degrees of freedom.

• Use the adjoint method to determine sensitivities

• The input and output springs are added to the analysis by adding the respective spring
stiffnesses at the positions of the input and output degrees of freedom in the global stiffness
matrix, respectively.

• Make use of symmetry

• Check the correctness of the derivatives of objective function and constraints by the finite
difference method for a number of different elements. Remember to turn of the checker-
board filter during this test.

• In order to stabilize convergence you may change the values of asyincr and asydecr in
the mmasub.m routine to 1.07 and 0.65, respectively (strategy for moving of asymptotes).
You may also introduce external fixed movelimits, i.e. xmin = max(0, x−move), etc.

• Start with Young’s modulus E=100 and spring stiffnesses and input forces unity.

Problem 6: Optimization with time-harmonic loads

Extend your code to optimize for undamped forced vibrations. With a time-harmonic load of
angular frequency ω, the FE equation is changed from Ku = f to:

Su = f , (5)

where f now represents the amplitude of the load and u the amplitude of vibration. S is the
system matrix (or ”dynamic stiffness” matrix) defined as

S = K− ω2M, (6)

where M is the global mass matrix.
Optimize the MBB-example for minimum dynamic compliance using the objective |uT f | for

a specific excitation frequency ω. The necessary expressions for the sensitivity calculations can
be found in Jensen (2017). Complete the following steps:

1. Use an MBB-beam optimized for static compliance as initial design and plot its frequency
response (objective values vs frequency). Use a log y-scale.

2. Choose the optimization frequency below the first resonance frequency (eg. at 90%).

5

3. Compute the frequency response of the optimized structure and compare it to the one
obtained for the initial structure.

4. Try also an optimization frequency closer to or above the first resonance frequency -
comment on your observations.

Hints for implementation:

• Assemble the mass matrix M using the local mass matrix found in appendix B.

• Use a linear interpolation for the mass.

• Use unit mass density of the material: rho0=1 and a minimum value in the void given as:
rhomin=1e-8. Change the minimum stiffness to Emin=1e-4.

• Use MMA (with movelimits) as optimizer.

• Use the density filter.

4 Voluntary Matlab problems

Problem 7: Min-Max formulation of multiple load cases

Minimize the maximum compliance of a three load case problem. This problem can be solved
by fiddling with the constants in the MMA optimizer.

An optimization problem looking like

min
xxx

: max
k=1,.....,p

{|hk(xxx)|}

subject to : gi(xxx) ≤ 0, i = 1, . . . , q

: xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n

 , (7)

can be re-written to

min
xxx, z

: z

subject to : hi − z ≤ 0, i = 1, . . . , p

: −hi − z ≤ 0, i = 1, . . . , p

: gi(xxx) ≤ 0, i = 1, . . . , q

: xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n

, (8)

which may be solved by MMA using the constants

m = 2p+ q (9)

f0(x) = 0

fi(x) = hi(x), i = 1, . . . , p

fp+i(x) = −hi(x), i = 1, . . . , p

f2p+i(x) = gi(x), i = 1, . . . , q

a0 = 1

ai = 1, i = 1, . . . , 2p

a2p+i = 0, i = 1, . . . , q

di = 0, i = 1, . . . ,m

ci = 1000, i = 1, . . . ,m

6

Problem 8: Robust topology optimization

Implement the robust design formulation Sigmund (2009), Wang et al. (2011) and test it on
the force inverter problem from course Problem 5. The 88-line code already has the Heaviside
projection filter built-in so the main challenge consists in implementing the min-max formulation
(like in course Problem 7) and solving for the three geometry cases in each iteration.

Problem 9: Mechanisms with multiple outputs

Design an “elevator mechanism” as shown in Figure 4 (the platform must remain horizontal
during elevation) or a gripping mechanism with parallel moving jaws.

Input
force

��

��

Elevation
platform

Figure 4: Mechanism synthesis for an “elevator mechanism”. The platform must remain horizontal during eleva-
tion.

Problem 10: Stress constraints

Implement stress constraints for a problem of your choice. Use the general formulation:

min
ρ

: Φ(ρ)

s.t. : K(ρ)u = f

:

N∑
e=1

veρe = vTρ 6 V ∗

: ||σVM (ρ)||P 6 σ∗y

: 0 < ρmin 6 ρ 6 1, (10)

where the global Von-Mises stress measure is defined as

||σVM (ρ)||P =

(
N∑
e=1

veσ
P
VM,e

) 1
P

(11)

An implementation for a mechanism design problem (including sensitivity analysis and ap-
propriate density interpolation schemes) can be found in Leon et al. (2015).

7

Problem 11: Infill design

Implement a local volume constraint for infill design using the general formulation:

min
ρ

: Φ(ρ̂)

s.t. : K(ρ̂)u = f

:
N∑
e=1

veρ̂e = vT ρ̂ 6 V ∗

: ||ρ̄(ρ̂)− α|| 6 ε

: 0 < ρmin 6 ρ 6 1, (12)

where ρ̂ is the standard (density or sensitivity filtered physical density) and ρ̄ denotes a larger
(density) filtering with radius yielding microstructure lengthscale with prescribed local density
α.

See more details in Wu et al. (2017).

Problem 12: Interior point method

In Problem 4 you have written a program that calls an optimization routine (MMA in our case)
to perform one design update. Most off-the-shelf optimization packages operate in a different
way. The software user is required to provide a number of callback functions, which evaluate
the value and the gradient of an objective function, values and gradients (Jacobian matrix) of
the non-linear constraints, if any are present. Further, some solver may utilize second order
derivatives (Hessian matrix) of the objective function and non-linear constraints in order to
achieve faster convergence (Newton-like methods), whereas other algorithms may approximate
second order derivatives based on the gradient information evaluated at previous iterations
(quasi-Newton approaches).

There are at least two possible optimizers that can be compared with MMA:

• fmincon which is a part of Matlab’s Optimization Toolbox2

• Ipopt Interior Point Optimizer (pronounced ”Eye-Pea-Opt”) is an open source software
package for large-scale nonlinear optimization.3

Start with a template program top88_fmincon.m downloadable from learn.inside.dtu.dk,
which is simply a re-arranged 88-line topology optimization code written in Matlab.

Fill in the code lines marked with comments %FIXIT, this should give you a compliance
minimization code similar to the one in Problem 5, but which is based on the interior-point
optimization algorithm with approximate second order information.

Compare the performance of the different optimizers on some benchmark examples (e.g.,
coming from Problems 1–3). When comparing, pay attention to the number of FE analysis
conducted.

Hints:

2Type help fmincon or doc fmincon to learn more about a multitude of various options and parameters of
fmincon routine.

3The Ipopt project homepage is https://coin-or.github.io/Ipopt/. A matlab interface can be found at
https://se.mathworks.com/matlabcentral/fileexchange/53040-ebertolazzi-mexipopt

8

• When debugging the script top88_fmincon.m you may wish to turn on the automatic
verification of user supplied derivatives by setting the option ’Derivative Checking’ to
’on’.

• You may study how the number of gradient vectors stored by the L-BFGS algorithm affects
the total number of optimization iterations and the total time of the solution by adjusting
the number after the option ’lbfgs’. More vectors mean potentially better approximation
of the Hessian, which comes at some computational cost. However, “too many vectors”
mean that the Hessian is approximated using the gradients evaluated far away from the
current optimization point, which may in fact be disadvantageous.

• By default, fmincon solves the optimization problem to a very high precision, 1 · 10−6.
This precision may be adjusted by setting the optimization parameters TolX , TolFun ,
and in the presence of non-linear constraints, TolCon .

• When comparing different methods, pay attention to the total number of optimization
iterations, total runtime, and the final value of the objective function found.

Problem 13: Three dimensions

Download the 3D code top3D125.m based on the top99neo.m code (https://www.topopt.mek.
dtu.dk/Apps-and-software/New-99-line-topology-optimization-code-written-in-MATLAB

- by Ferrrari and Sigmund) and implement some of the exercises in this code.

Problem 14: Alternative measures of dynamic compliance

Optimize the MBB-example for time-harmonic loads using an alternative choice of dynamic
compliance: 1) dissipated energy in the structure or 2) total energy level in the structure.
Compare the optimized structures to the ones obtained in exercise 6.

Problem 15: Others

Look in Bendsøe and Sigmund (2004) and get inspired to solve some other problems like thermal
loads, conduction, self-weight etc.

References

Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. and Sigmund, O.: 2011, Efficient
topology optimization in matlab using 88 lines of code, Structural and Multidisciplinary Op-
timization 43, 1–6. MATLAB code available online at: www.topopt.dtu.dk.

Bendsøe, M. P. and Sigmund, O.: 2004, Topology Optimization - Theory, Methods and Applica-
tions, Springer Verlag, Berlin Heidelberg.

Jensen, J. S.: 2017, Adjoint sensitivity analysis for linear dynamic systems with time-harmonic
excitation, Report, Department of Mechanical Engineering, Technical University of Denmark.

Leon, D. D., Alexandersen, J., Fonseca, J. and Sigmund, O.: 2015, Stress-constrained topology
optimization for compliant mechanism design, Struct Multidisc Optim 52, 929–943.

Sigmund, O.: 1997, On the design of compliant mechanisms using topology optimization, Me-
chanics of Structures and Machines 25(4), 493–524.

9

Sigmund, O.: 2001, A 99 line topology optimization code written in MATLAB, Struc-
tural and Multidisciplinary Optimization 21, 120–127. MATLAB code available online at:
www.topopt.dtu.dk.

Sigmund, O.: 2009, Manufacturing tolerant topology optimization, Acta Mechanica Sinica
25(2), 227–239.

Svanberg, K.: 1987, The Method of Moving Asymptotes - A new method for structural opti-
mization, International Journal for Numerical Methods in Engineering 24, 359–373.

Wang, F., Lazarov, B. and Sigmund, O.: 2011, On projection methods, convergence and robust
formulations in topology optimization, Structural and Multidisciplinary Optimization 43, 767–
784.

Wu, J., Aage, N., Westermann, R. and Sigmund, O.: 2017, Infill optimization for additive
manufacturing approaching bone-like porous structures, IEEE Transactions on Visualization
and Computer Graphics in press.

A Appendix: MATLAB extension for plotting displacements

To obtain plots with displacements exchange the line

colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);

with the lines

% colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);

colormap(gray); axis equal; axis tight; axis off;

Faces = ((edofMat(:,[1 3 5 7])-1)/2)+1;

[XGrid,YGrid]=meshgrid(0:nelx,nely:-1:0);

Grid = [XGrid(:),YGrid(:)];

Deform = [U(1:2:end,1),U(2:2:end,1)];

patch(’Faces’,Faces,’Vertices’,Grid+Deform*0.05,’FaceColor’,’Flat’, ...

’FaceVertexCData’,1-x(:),’EdgeColor’,’none’);

drawnow; clf;

Note that the factor 0.05 is a scaling factor that may be freely chosen.

B Appendix: MATLAB mass and strain-displacement matrices
for 4-node element

The strain displacement matrix (ε = Bue)

bmat = [-1/2 0 1/2 0 1/2 0 -1/2 0

0 -1/2 0 -1/2 0 1/2 0 1/2

-1/2 -1/2 -1/2 1/2 1/2 1/2 1/2 -1/2];

and the mass matrix (with total mass equal to unity)

m0 = [4/9 0 2/9 0 1/9 0 2/9 0

0 4/9 0 2/9 0 1/9 0 2/9

2/9 0 4/9 0 2/9 0 1/9 0

0 2/9 0 4/9 0 2/9 0 1/9

1/9 0 2/9 0 4/9 0 2/9 0

0 1/9 0 2/9 0 4/9 0 2/9

2/9 0 1/9 0 2/9 0 4/9 0

0 2/9 0 1/9 0 2/9 0 4/9]/(4*nel);

10

and the constitutive matrix for plane stress

Emat = E/(1-nu^2)*[1 nu 0

nu 1 0

0 0 (1-nu)/2];

C Appendix: Fast MATLAB sparse assembly

The top.m code uses a sparse assembly strategy that is easy to read but highly inefficient for larger
problem:

K=sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));

F=sparse(2*(nely+1)*(nelx+1),1);

U=zeros(2*(nely+1)*(nelx+1),1);

for elx = 1:nelx

for ely = 1:nely

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];

K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;

end

end

A dramatic speed-up can be obtained (for large problems) if the lines above are replaced by the following
lines:

I=zeros(nelx*nely*64,1);

J=zeros(nelx*nely*64,1);

X=zeros(nelx*nely*64,1);

F=sparse(2*(nely+1)*(nelx+1),1);

U=zeros(2*(nely+1)*(nelx+1),1);

ntriplets=0;

for elx = 1:nelx

for ely = 1:nely

n1 = (nely+1)*(elx-1)+ely;

n2 = (nely+1)* elx +ely;

edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2];

xval = x(ely,elx)^penal;

for krow = 1:8

for kcol = 1:8

ntriplets = ntriplets+1;

I(ntriplets) = edof(krow);

J(ntriplets) = edof(kcol);

X(ntriplets) = xval*KE(krow,kcol);

end

end

end

end

K=sparse(I,J,X,2*(nelx+1)*(nely+1),2*(nelx+1)*(nely+1));

D Appendix: MMA Matlab documentation

You may download the MMA-code from the file sharing pages on Learn (learn.inside.dtu.dk).

% This is the file mmasub.m

%

11

function [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ...

mmasub(m,n,iter,xval,xmin,xmax,xold1,xold2, ...

f0val,df0dx,df0dx2,fval,dfdx,dfdx2,low,upp,a0,a,c,d);

%

% Written in May 1999 by

% Krister Svanberg <krille@math.kth.se>

% Department of Mathematics

% SE-10044 Stockholm, Sweden.

%

% Modified ("spdiags" instead of "diag") April 2002

%

%

% This function mmasub performs one MMA-iteration, aimed at

% solving the nonlinear programming problem:

%

% Minimize f_0(x) + a_0*z + sum(c_i*y_i + 0.5*d_i*(y_i)^2)

% subject to f_i(x) - a_i*z - y_i <= 0, i = 1,...,m

% xmin_j <= x_j <= xmax_j, j = 1,...,n

% z >= 0, y_i >= 0, i = 1,...,m

%*** INPUT:

%

% m = The number of general constraints.

% n = The number of variables x_j.

% iter = Current iteration number (=1 the first time mmasub is called).

% xval = Column vector with the current values of the variables x_j.

% xmin = Column vector with the lower bounds for the variables x_j.

% xmax = Column vector with the upper bounds for the variables x_j.

% xold1 = xval, one iteration ago (provided that iter>1).

% xold2 = xval, two iterations ago (provided that iter>2).

% f0val = The value of the objective function f_0 at xval.

% df0dx = Column vector with the derivatives of the objective function

% f_0 with respect to the variables x_j, calculated at xval.

% df0dx2 = Column vector with the non-mixed second derivatives of the

% objective function f_0 with respect to the variables x_j,

% calculated at xval. df0dx2(j) = the second derivative

% of f_0 with respect to x_j (twice).

% Important note: If second derivatives are not available,

% simply let df0dx2 = 0*df0dx.

% fval = Column vector with the values of the constraint functions f_i,

% calculated at xval.

% dfdx = (m x n)-matrix with the derivatives of the constraint functions

% f_i with respect to the variables x_j, calculated at xval.

% dfdx(i,j) = the derivative of f_i with respect to x_j.

% dfdx2 = (m x n)-matrix with the non-mixed second derivatives of the

% constraint functions f_i with respect to the variables x_j,

% calculated at xval. dfdx2(i,j) = the second derivative

% of f_i with respect to x_j (twice).

% Important note: If second derivatives are not available,

% simply let dfdx2 = 0*dfdx.

% low = Column vector with the lower asymptotes from the previous

% iteration (provided that iter>1).

% upp = Column vector with the upper asymptotes from the previous

% iteration (provided that iter>1).

% a0 = The constants a_0 in the term a_0*z.

% a = Column vector with the constants a_i in the terms a_i*z.

% c = Column vector with the constants c_i in the terms c_i*y_i.

12

% d = Column vector with the constants d_i in the terms 0.5*d_i*(y_i)^2.

%

%*** OUTPUT:

%

% xmma = Column vector with the optimal values of the variables x_j

% in the current MMA subproblem.

% ymma = Column vector with the optimal values of the variables y_i

% in the current MMA subproblem.

% zmma = Scalar with the optimal value of the variable z

% in the current MMA subproblem.

% lam = Lagrange multipliers for the m general MMA constraints.

% xsi = Lagrange multipliers for the n constraints alfa_j - x_j <= 0.

% eta = Lagrange multipliers for the n constraints x_j - beta_j <= 0.

% mu = Lagrange multipliers for the m constraints -y_i <= 0.

% zet = Lagrange multiplier for the single constraint -z <= 0.

% s = Slack variables for the m general MMA constraints.

% low = Column vector with the lower asymptotes, calculated and used

% in the current MMA subproblem.

% upp = Column vector with the upper asymptotes, calculated and used

% in the current MMA subproblem.

%

epsimin = sqrt(m+n)*10^(-9);

feps = 0.000001;

asyinit = 0.5;

asyincr = 1.2;

asydecr = 0.7;

13

